Advertisement
Review| Volume 11, ISSUE 4, P390-396, December 2013

Technologic Developments in the Field of Photonics for the Detection of Urinary Bladder Cancer

  • Scott Palmer
    Affiliations
    Academic Section of Urology, Medical School and Ninewells Hospital, Dundee, UK

    Photonics and Nanoscience Group, School of Engineering, Physics and Mathematics, University of Dundee, UK
    Search for articles by this author
  • Sergei G. Sokolovski
    Affiliations
    Photonics and Nanoscience Group, School of Engineering, Physics and Mathematics, University of Dundee, UK
    Search for articles by this author
  • Edik Rafailov
    Affiliations
    Photonics and Nanoscience Group, School of Engineering, Physics and Mathematics, University of Dundee, UK
    Search for articles by this author
  • Ghulam Nabi
    Correspondence
    Address for correspondence: Ghulam Nabi, MS, MD, MCh, FRCS (Urol), Clinical Senior Lecturer in Surgical Uro-oncology and Consultant Urological Surgeon, Academic Section of Urology, Ninewells Hospital, Medical Research Institute, Population Sciences Division, University of Dundee, Dundee, DD1 9SY Fax: 0044 1382 5673201
    Affiliations
    Academic Section of Urology, Medical School and Ninewells Hospital, Dundee, UK
    Search for articles by this author

      Abstract

      Bladder cancer is a common cause of morbidity and mortality worldwide in an aging population. Each year, thousands of people, mostly men, are diagnosed with this disease, but many of them present too late to receive optimal treatment. As with all cancers, early diagnosis of bladder cancer significantly improves the efficacy of therapy and increases survival and recurrence-free survival rates. Ongoing research has identified many limitations about the sensitivity of standard diagnostic procedures in detecting early-stage tumors and precancerous changes. The consequences of this are often tumor progression and increased tumor burden, leading to a decrease in patient quality of life and a vast increase in treatment costs. The necessity for improved early detection of bladder cancer has spurred on research into novel methods that use a wide range of biological and photonic phenomena. This review will broadly discuss standard detection methodologies and their major limitations before covering novel photonic techniques for early tumor detection and staging, assessing their diagnostic accuracy for flat and precancerous changes. We will do so in the context of both cystoscopic examination and the screening of voided urine and will also touch on the concept of using photonic technology as a surgical tool for tumor ablation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Genitourinary Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miyamoto H.
        • Yang Z.
        • Chen Y.T.
        • Ishiguro H.
        • Uemura H.
        • Kubota Y.
        • Nagashima Y.
        • Chang Y.J.
        • Hu Y.C.
        • Tsai M.Y.
        • Yeh S.
        • Messing E.M.
        • Chang C.
        Promotion of bladder cancer development and progression by androgen receptor signals.
        Journal of the National Cancer Institute. 2007; 99: 558-568
        • Letasiova S.
        • Medve'ova A.
        • Sovcikova A.
        • Dusinska M.
        • Volkovova K.
        • Mosoiu C.
        • Bartonova A.
        Bladder cancer, a review of the environmental risk factors.
        Environmental health: a global access science source. 2012; 11: S11
        • Humphrey P.A.
        Urothelial carcinoma in situ of the bladder.
        J Urol. 2012; 187: 1057-1058
        • Askeland E.J.
        • Newton M.R.
        • O'Donnell M.A.
        • Luo Y.
        Bladder Cancer Immunotherapy: BCG and Beyond.
        Advances in urology. 2012; 2012: 181987
        • Davis J.W.
        • Sheth S.I.
        • Doviak M.J.
        • Schellhammer P.F.
        Superficial bladder carcinoma treated with bacillus Calmette-Guerin: progression-free and disease specific survival with minimum 10-year followup.
        J Urol. 2002; 167 (discussion 501): 494-500
        • Schwaibold H.E.
        • Sivalingam S.
        • May F.
        • Hartung R.
        The value of a second transurethral resection for T1 bladder cancer.
        BJU international. 2006; 97: 1199-1201
        • Isfoss B.L.
        • Majak B.
        • Busch C.
        • Braathen G.J.
        Diagnosis of intraurothelial neoplasia. Interobserver variation and the value of individual histopathologic attributes.
        Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology. 2011; 33: 75-81
        • Sangar V.K.
        • Ragavan N.
        • Matanhelia S.S.
        • Watson M.W.
        • Blades R.A.
        The economic consequences of prostate and bladder cancer in the UK.
        BJU international. 2005; 95: 59-63
        • Kah J.C.
        • Lau W.K.
        • Tan P.H.
        • Sheppard C.J.
        • Olivo M.
        Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ.
        Journal of biomedical optics. 2008; 13: 054022
        • Denzinger S.
        • Burger M.
        • Walter B.
        • Knuechel R.
        • Roessler W.
        • Wieland W.F.
        • Filbeck T.
        Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study.
        Urology. 2007; 69: 675-679
        • Chin W.W.
        • Thong P.S.
        • Bhuvaneswari R.
        • Soo K.C.
        • Heng P.W.
        • Olivo M.
        In-vivo optical detection of cancer using chlorin e6–polyvinylpyrrolidone induced fluorescence imaging and spectroscopy.
        BMC medical imaging. 2009; 9: 1
        • Olivo M.
        • Fu C.Y.
        • Raghavan V.
        • Lau W.K.
        New frontier in hypericin-mediated diagnosis of cancer with current optical technologies.
        Annals of biomedical engineering. 2012; 40: 460-473
        • Mowatt G.
        • N'Dow J.
        • Vale L.
        • Nabi G.
        • Boachie C.
        • Cook J.A.
        • Fraser C.
        • Griffiths T.R.
        Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis.
        International journal of technology assessment in health care. 2011; 27: 3-10
        • Yates D.R.
        • Brausi M.A.
        • Catto J.W.
        • Dalbagni G.
        • Roupret M.
        • Shariat S.F.
        • Sylvester R.J.
        • Witjes J.A.
        • Zlotta A.R.
        • Palou-Redorta J.
        Treatment options available for bacillus Calmette-Guerin failure in non-muscle-invasive bladder cancer.
        European urology. 2012; 62: 1088-1096
        • Draga R.O.
        • Grimbergen M.C.
        • Vijverberg P.L.
        • van Swol C.F.
        • Jonges T.G.
        • Kummer J.A.
        • Ruud Bosch J.L.
        In vivo bladder cancer diagnosis by high-volume Raman spectroscopy.
        Analytical chemistry. 2010; 82: 5993-5999
        • Barman I.
        • Dingari N.C.
        • Singh G.P.
        • Kumar R.
        • Lang S.
        • Nabi G.
        Selective sampling using confocal Raman spectroscopy provides enhanced specificity for urinary bladder cancer diagnosis.
        Analytical and Bioanalytical Chemistry. 2012; 404: 3091-3099
        • El-Said W.A.
        • Kim T.H.
        • Kim H.
        • Choi J.W.
        Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering.
        PloS one. 2011; 6: e15836
        • Anidjar M.
        • Ettori D.
        • Cussenot O.
        • Meria P.
        • Desgrandchamps F.
        • Cortesse A.
        • Teillac P.
        • Le Duc A.
        • Avrillier S.
        Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength.
        The Journal of urology. 1996; 156: 1590-1596
        • Walsh A.
        • Cook R.S.
        • Rexer B.
        • Arteaga C.L.
        • Skala M.C.
        Optical imaging of metabolism in HER2 overexpressing breast cancer cells.
        Biomedical optics express. 2012; 3: 75-85
        • Demos S.G.
        • Gandour-Edwards R.
        • Ramsamooj R.
        • White R.
        Near-infrared autofluorescence imaging for detection of cancer.
        Journal of biomedical optics. 2004; 9: 587-592
        • Chen W.L.
        • Hu P.S.
        • Ghazaryan A.
        • Chen S.J.
        • Tsai T.H.
        • Dong C.Y.
        Quantitative analysis of multiphoton excitation autofluorescence and second harmonic generation imaging for medical diagnosis.
        Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society. 2012; 36: 519-526
        • Jain M.
        • Robinson B.D.
        • Scherr D.S.
        • Sterling J.
        • Lee M.M.
        • Wysock J.
        • Rubin M.A.
        • Maxfield F.R.
        • Zipfel W.R.
        • Webb W.W.
        • Mukherjee S.
        Multiphoton microscopy in the evaluation of human bladder biopsies.
        Archives of pathology & laboratory medicine. 2012; 136: 517-526
        • Gatesman Ammer A.
        • Hayes K.E.
        • Martin K.H.
        • Zhang L.
        • Spirou G.A.
        Weed SA: Multi-photon Imaging of Tumor Cell Invasion in an Orthotopic Mouse Model of Oral Squamous Cell Carcinoma.
        J Vis Exp. 2011; : e2941
        • Rivera D.R.
        • Brown C.M.
        • Ouzounov D.G.
        • Pavlova I.
        • Kobat D.
        • Webb W.W.
        • Xu C.
        Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue.
        Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 17598-17603
        • Jacobson M.C.
        • deVere White R.
        • Demos S.G.
        In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer.
        Journal of biomedical optics. 2012; 17: 036011
        • Cauberg E.C.
        • Kloen S.
        • Visser M.
        • de la Rosette J.J.
        • Babjuk M.
        • Soukup V.
        • Pesl M.
        • Duskova J.
        • de Reijke T.M.
        Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer.
        Urology. 2010; 76: 658-663
        • Zebger I.
        • Snyder J.W.
        • Andersen L.K.
        • Poulsen L.
        • Gao Z.
        • Lambert J.D.
        • Kristiansen U.
        • Ogilby P.R.
        Direct optical detection of singlet oxygen from a single cell.
        Photochem Photobiol. 2004; 79: 319-322
        • Anquez F.
        • El Yazidi-Belkoura I.
        • Randoux S.
        • Suret P.
        Courtade E: Cancerous Cell Death from Sensitizer Free Photoactivation of Singlet Oxygen.
        Photochemistry and Photobiology. 2012; 88: 167-174
        • Tilki D.
        • Burger M.
        • Dalbagni G.
        • Grossman H.B.
        • Hakenberg O.W.
        • Palou J.
        • Reich O.
        • Roupret M.
        • Shariat S.F.
        • Zlotta A.R.
        Urine markers for detection and surveillance of non-muscle-invasive bladder cancer.
        European urology. 2011; 60: 484-492
        • Schwarz S.
        • Rechenmacher M.
        • Filbeck T.
        • Knuechel R.
        • Blaszyk H.
        • Hartmann A.
        • Brockhoff G.
        Value of multicolour fluorescence in situ hybridisation (UroVysion) in the differential diagnosis of flat urothelial lesions.
        Journal of Clinical Pathology. 2007; 61: 272-277
        • Bonberg N.
        • Taeger D.
        • Gawrych K.
        • Johnen G.
        • Banek S.
        • Schwentner C.
        • Sievert K.-D.
        • Wellhäußer H.
        • Kluckert M.
        • Leng G.
        • Nasterlack M.
        • Stenzl A.
        • Behrens T.
        • Brüning T.
        • Pesch B.
        Chromosomal instability and bladder cancer: the UroVysionTMtest in the UroScreen study.
        BJU international. 2013; (n/a-n/a)
        • Jaganath R.
        • Angeletti C.
        • Levenson R.
        • Rimm D.L.
        Diagnostic classification of urothelial cells in urine cytology specimens using exclusively spectral information.
        Cancer. 2004; 102: 186-191
        • Bird B.
        • Romeo M.J.
        • Diem M.
        • Bedrossian K.
        • Laver N.
        • Naber S.
        Cytology by infrared micro-spectroscopy: Automatic distinction of cell types in urinary cytology.
        Vibrational Spectroscopy. 2008; 48: 101-106