Original Study| Volume 14, ISSUE 4, P352-359, August 2016

Expression Levels of DNA Damage Repair Proteins Are Associated With Overall Survival in Platinum-Treated Advanced Urothelial Carcinoma

Published:December 24, 2015DOI:



      Combination platinum chemotherapy is standard first-line therapy for metastatic urothelial carcinoma (mUC). Defining the platinum response biomarkers for patients with mUC could establish personalize medicine and provide insights into mUC biology. Although DNA repair mechanisms have been hypothesized to mediate the platinum response, we sought to analyze whether increased expression of DNA damage genes would correlate with worse overall survival (OS) in patients with mUC.

      Patients and Methods

      We retrospectively identified a clinically annotated cohort of patients with mUC, who had been treated with first-line platinum combination chemotherapy. A tissue microarray was constructed from formalin-fixed paraffin-embedded tissue from the primary tumor before treatment. Immunohistochemical analysis of the following DNA repair proteins was performed: ERCC1, RAD51, BRCA1/2, PAR, and PARP-1. Nuclear and cytoplasmic expression was analyzed using multispectral imaging. Nuclear staining was used for the survival analysis. Cox regression analysis was used to evaluate the associations between the percentage of positive nuclear staining and OS in multivariable analysis, controlling for known prognostic variables.


      In a cohort of 104 patients with mUC, a greater percentage of nuclear staining of ERCC1 (hazard ratio [HR], 2.7; 95% confidence interval [CI], 1.5-4.9; P = .0007), RAD51 (HR, 5.6; 95% CI, 1.7-18.3; P = .005), and PAR (HR, 2.2; 95% CI, 1.1-4.4; P = .026) was associated with worse OS. BRCA1, BRCA2, and PARP-1 expression was not associated with OS (P = .76, P = .38, and P = .09, respectively). A greater percentage of combined ERCC1 and RAD51 nuclear staining was strongly associated with worse OS (P = .005).


      A high percentage of nuclear staining of ERCC1, RAD51, and PAR, assessed by immunohistochemistry, correlated with worse OS for patients with mUC treated with first-line platinum combination chemotherapy, supporting the evidence of the DNA repair pathways' role in the prognosis of mUC. We also report new evidence that RAD51 and PAR might play a role in the platinum response. Additional prospective studies are required to determine the prognostic or predictive nature of these biomarkers in mUC.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Genitourinary Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2015.
        CA Cancer J Clin. 2015; 65: 5-29
        • Burger M.
        • Oosterlinck W.
        • Konety B.
        • et al.
        ICUD-EAU international consultation on bladder cancer 2012: non-muscle-invasive urothelial carcinoma of the bladder.
        Eur Urol. 2013; 63: 36-44
        • Advanced Bladder Cancer (ABC) Meta-analysis Collaboration
        Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration.
        Eur Urol. 2005; 48: 202-206
        • Roberts J.T.
        • von der Maase H.
        • Sengeløv L.
        • et al.
        Long-term survival results of a randomized trial comparing gemcitabine/cisplatin and methotrexate/vinblastine/doxorubicin/cisplatin in patients with locally advanced and metastatic bladder cancer.
        Ann Oncol. 2006; 17: v118-v122
        • Kaufman D.S.
        • Shipley W.U.
        • Feldman A.S.
        Bladder cancer.
        Lancet. 2009; 374: 239-249
        • von der Maase H.
        • Sengeløv L.
        • Roberts J.T.
        • et al.
        Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer.
        J Clin Oncol. 2005; 23: 4602-4608
        • Sternberg C.N.
        • de Mulder P.H.
        • Schornagel J.H.
        • et al.
        Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924.
        J Clin Oncol. 2001; 19: 2638-2646
        • Bellmunt J.
        • Albanell J.
        • Paz-Ares L.
        • et al.
        Pretreatment prognostic factors for survival in patients with advanced urothelial tumors treated in a phase I/II trial with paclitaxel, cisplatin, and gemcitabine.
        Cancer. 2002; 95: 751-757
        • Van Allen E.M.
        • Mouw K.W.
        • Kim P.
        • et al.
        Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma.
        Cancer Discov. 2014; 4: 1140-1153
      1. Groenendijk FH, de Jong J, Fransen van de Putte EE, et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol Epub 2015; Jan 27.

        • Jalal S.
        • Earley J.N.
        • Turchi J.J.
        DNA repair: from genome maintenance to biomarker and therapeutic target.
        Clin Cancer Res. 2011; 17: 6973-6984
        • Kennedy R.D.
        • D'Andrea A.D.
        DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes.
        J Clin Oncol. 2006; 24: 3799-3808
        • Foulkes W.D.
        BRCA1 and BRCA2: chemosensitivity, treatment outcomes and prognosis.
        Fam Cancer. 2006; 5: 135-142
        • Gudmundsdottir K.
        • Ashworth A.
        The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability.
        Oncogene. 2006; 25: 5864-5874
        • Sun C.
        • Li N.
        • Ding D.
        • et al.
        The role of BRCA status on the prognosis of patients with epithelial ovarian cancer: a systematic review of the literature with a meta-analysis.
        PLoS One. 2014; 9: e95285
        • Bergot E.
        • Levallet G.
        • Campbell K.
        • et al.
        Predictive biomarkers in patients with resected non-small cell lung cancer treated with perioperative chemotherapy.
        Eur Respir Rev. 2013; 22: 565-576
        • Nogueira A.
        • Assis J.
        • Catarino R.
        • Medeiros R.
        DNA repair and cytotoxic drugs: the potential role of RAD51 in clinical outcome of non-small-cell lung cancer patients.
        Pharmacogenomics. 2013; 14: 689-700
        • Quinn J.E.
        • James C.R.
        • Stewart G.E.
        • et al.
        BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy.
        Clin Cancer Res. 2007; 13: 7413-7420
        • James C.R.
        • Quinn J.E.
        • Mullan P.B.
        • Johnston P.G.
        • Harkin D.P.
        BRCA1, a potential predictive biomarker in the treatment of breast cancer.
        Oncologist. 2007; 12: 142-150
        • Kang C.H.
        • Jang B.G.
        • Kim D.W.
        • et al.
        The prognostic significance of ERCC1, BRCA1, XRCC1, and betaIII-tubulin expression in patients with non-small cell lung cancer treated by platinum- and taxane-based neoadjuvant chemotherapy and surgical resection.
        Lung Cancer. 2010; 68: 478-483
        • Font A.
        • Taron M.
        • Gago J.L.
        • et al.
        BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer.
        Ann Oncol. 2011; 22: 139-144
        • Schreiber V.
        • Dantzer F.
        • Ame J.C.
        • de Murcia G.
        Poly(ADP-ribose): novel functions for an old molecule.
        Nat Rev Mol Cell Biol. 2006; 7: 517-528
        • Reed E.
        ERCC1 and clinical resistance to platinum-based therapy.
        Clin Cancer Res. 2005; 11: 6100-6102
        • Bellmunt J.
        • Paz-Ares L.
        • Cuello M.
        • et al.
        Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy.
        Ann Oncol. 2007; 18: 522-528
        • Kwon H.C.
        • Roh M.S.
        • Oh S.Y.
        • et al.
        Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer.
        Ann Oncol. 2007; 18: 504-509
        • Zheng Z.
        • Chen T.
        • Li X.
        • Haura E.
        • Sharma A.
        • Bepler G.
        DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer.
        N Engl J Med. 2007; 356: 800-808
        • Steffensen K.D.
        • Waldstrøm M.
        • Jeppesen U.
        • Brandslund I.
        • Jakobsen A.
        Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer.
        Int J Gynecol Cancer. 2008; 18: 702-710
        • Bhagwat N.R.
        • Roginskaya V.Y.
        • Acquafondeta M.B.
        • Dhir R.
        • Wood R.D.
        • Niedernhofer L.J.
        Immunodetection of DNA repair endonuclease ERCC1-XPF in human tissue.
        Cancer Res. 2009; 69: 6831-6838
        • Söderlund K.
        • Skoog L.
        • Fornander T.
        • Askmalm M.S.
        The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer.
        Radiother Oncol. 2007; 84: 242-251
        • Sternberg C.N.
        • de Mulder P.
        • Schornagel J.H.
        • et al.
        Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours.
        Eur J Cancer. 2006; 42: 50-54
        • Loehrer P.J.
        • Einhorn L.H.
        • Elson P.J.
        • et al.
        A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study.
        J Clin Oncol. 1992; 10: 1066-1073
        • Bajorin D.F.
        • Dodd P.M.
        • Mazumdar M.
        • et al.
        Long-term survival in metastatic transitional-cell carcinoma and prognostic factors predicting outcome of therapy.
        J Clin Oncol. 1999; 17: 3173-3181
        • Bellmunt J.
        • Albanell J.
        • Paz-Ares L.
        • et al.
        Pretreatment prognostic factors for survival in patients with advanced urothelial tumors treated in a phase I/II trial with paclitaxel, cisplatin, and gemcitabine.
        Cancer. 2002; 95: 751-757
        • Bellmunt J.
        • Choueiri T.K.
        • Fougeray R.
        • et al.
        Prognostic factors in patients with advanced transitional cell carcinoma of the urothelial tract experiencing treatment failure with platinum-containing regimens.
        J Clin Oncol. 2010; 28: 1850-1855
        • Choi W.
        • Porten S.
        • Kim S.
        • et al.
        Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy.
        Cancer Cell. 2014; 25: 152-165
        • Plimack E.R.
        • Dunbrack R.L.
        • Brennan T.A.
        • et al.
        Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer.
        Eur Urol. 2015; 68: 959-967
        • Bowden N.A.
        Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy?.
        Cancer Lett. 2014; 346: 163-171
        • Martin L.P.
        • Hamilton T.C.
        • Schilder R.J.
        Platinum resistance: the role of DNA repair pathways.
        Clin Cancer Res. 2008; 14: 1291-1295
        • Lindahl T.
        • Wood R.D.
        Quality control by DNA repair.
        Science. 1999; 286: 1897-1905
        • Fagbemi A.F.
        • Orelli B.
        • Schärer O.D.
        Regulation of endonuclease activity in human nucleotide excision repair.
        DNA Repair (Amst). 2011; 10: 722-729
        • Selvakumaran M.
        • Pisarcik D.A.
        • Bao R.
        • Yeung A.T.
        • Hamilton T.C.
        Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines.
        Cancer Res. 2003; 63: 1311-1316
        • Guix M.
        • Lema L.
        • Lloreta J.
        • et al.
        Excision repair cross-complementing 1 (ERCC1) and survival in advanced bladder cancer: confirmatory results using immunohistochemistry.
        J Clin Oncol. 2009; 27 (2009 ASCO Meeting Abstracts) (abstract 5025): 15s
        • Galluzzi L.
        • Vitale I.
        • Michels J.
        • et al.
        Systems biology of cisplatin resistance: past, present and future.
        Cell Death Dis. 2014; 5: e1257
        • Zhao W.
        • Hu L.
        • Xu J.
        • et al.
        Polymorphisms in the base excision repair pathway modulate prognosis of platinum-based chemotherapy in advanced non-small cell lung cancer.
        Cancer Chemother Pharmacol. 2013; 71: 1287-1295
        • Rouleau M.
        • Aubin R.A.
        • Poirier G.G.
        Poly(ADP-ribosyl)ated chromatin domains: access granted.
        J Cell Sci. 2004; 117: 815-825
        • El-Khamisy S.F.
        • Masutani M.
        • Suzuki H.
        • Caldecott K.W.
        A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage.
        Nucleic Acids Res. 2003; 31: 5526-5533
        • Leppard J.B.
        • Dong Z.
        • Mackey Z.B.
        • Tomkinson A.E.
        Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
        Mol Cell Biol. 2003; 23: 5919-5927
        • Prasad R.
        • Lavrik O.I.
        • Kim S.J.
        • et al.
        DNA polymerase beta -mediated long patch base excision repair. Poly(ADP-ribose)polymerase-1 stimulates strand displacement DNA synthesis.
        J Biol Chem. 2001; 276: 32411-32414
        • Malanga M.
        • Althaus F.R.
        The role of poly(ADP-ribose) in the DNA damage signaling network.
        Biochem Cell Biol. 2005; 83: 354-364
        • Graeser M.
        • McCarthy A.
        • Lord C.J.
        • et al.
        A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer.
        Clin Cancer Res. 2010; 16: 6159-6168
        • Murphy C.G.
        • Moynahan M.E.
        BRCA gene structure and function in tumor suppression: a repair-centric perspective.
        Cancer J. 2010; 16: 39-47
        • O'Grady S.
        • Finn S.P.
        • Cuffe S.
        • Richard D.J.
        • O'Bryne K.J.
        • Barr M.P.
        The role of DNA repair pathways in cisplatin resistant lung cancer.
        Cancer Treat Rev. 2014; 40: 1161-1170
        • García-Campelo R.
        • Alonso-Curbera G.
        • Antón Aparicio L.M.
        • Rosell R.
        Pharmacogenomics in lung cancer: an analysis of DNA repair gene expression in patients treated with platinum-based chemotherapy.
        Expert Opin Pharmacother. 2005; 6: 2015-2026
        • Boukovinas I.
        • Papadaki C.
        • Mendez P.
        • et al.
        Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients.
        PLoS One. 2008; 3: e3695
        • Stordal B.
        • Davey R.
        A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1.
        Curr Cancer Drug Targets. 2009; 9: 354-365
        • McCabe N.
        • Turner N.C.
        • Lord C.J.
        • et al.
        Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.
        Cancer Res. 2006; 66: 8109-8115
        • Mendes-Pereira A.M.
        • Martin S.A.
        • Brough R.
        • et al.
        Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors.
        EMBO Mol Med. 2009; 1: 315-322
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • Rehman F.L.
        • Lord C.J.
        • Ashworth A.
        Synthetic lethal approaches to breast cancer therapy.
        Nat Rev Clin Oncol. 2010; 7: 718-724
        • Shaheen M.
        • Allen C.
        • Nickoloff J.A.
        • Hromas R.
        Synthetic lethality: exploiting the addiction of cancer to DNA repair.
        Blood. 2011; 117: 6074-6082
        • Kaelin W.G.
        The concept of synthetic lethality in the context of anticancer therapy.
        Nat Rev Cancer. 2005; 5: 689-698