Advertisement

DNA Repair Pathway Alterations in Metastatic Castration-resistant Prostate Cancer Responders to Radium-223

Published:December 05, 2017DOI:https://doi.org/10.1016/j.clgc.2017.11.009
      Predictive biomarkers are needed in metastatic castration-resistant prostate cancer to guide treatment selection.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Robinson D.
        • Van Allen E.M.
        • Wu Y.M.
        • et al.
        Integrative clinical genomics of advanced prostate cancer.
        Cell. 2015; 162: 454
        • Pritchard C.C.
        • Mateo J.
        • Walsh M.F.
        • et al.
        Inherited DNA-repair gene mutations in men with metastatic prostate cancer.
        N Engl J Med. 2016; 375: 443-453
        • Castro E.
        • Goh C.
        • Olmos D.
        • et al.
        Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer.
        J Clin Oncol. 2013; 31: 1748-1757
        • Bryant H.E.
        • Schultz N.
        • Thomas H.D.
        • et al.
        Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
        Nature. 2005; 434: 913-917
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • Lord C.J.
        • Ashworth A.
        PARP inhibitors: synthetic lethality in the clinic.
        Science. 2017; 355: 1152-1158
        • Mateo J.
        • Carreira S.
        • Sandhu S.
        • et al.
        DNA-repair defects and olaparib in metastatic prostate cancer.
        N Engl J Med. 2015; 373: 1697-1708
        • Cheng H.H.
        • Pritchard C.C.
        • Boyd T.
        • Nelson P.S.
        • Montgomery B.
        Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer.
        Eur Urol. 2016; 69: 992-995
        • Parker C.
        • Nilsson S.
        • Heinrich D.
        • et al.
        Alpha emitter radium-223 and survival in metastatic prostate cancer.
        N Engl J Med. 2013; 369: 213-223
        • Nilsson S.
        Radium-223 Therapy of bone metastases in prostate cancer.
        Semin Nucl Med. 2016; 46: 544-556
        • Cheng H.H.
        • Lin D.W.
        • Yu E.Y.
        Advanced clinical states in prostate cancer.
        Urol Clin North Am. 2012; 39: 561-571
        • Sartor O.
        • Coleman R.E.
        • Nilsson S.
        • et al.
        An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223.
        Ann Oncol. 2017; 28: 1090-1097
        • Sartor O.
        • Heinrich D.
        • Mariados N.
        • et al.
        Re-treatment with radium-223: first experience from an international, open-label, phase I/II study in patients with castration-resistant prostate cancer and bone metastases.
        Ann Oncol. 2017; 28: 2464-2471
        • Steinberger A.E.
        • Cotogno P.
        • Ledet E.M.
        • Lewis B.
        • Sartor O.
        Exceptional duration of radium-223 in prostate cancer with a BRCA2 mutation.
        Clin Genitourin Cancer. 2017; 15: e69-e71
        • Alva A.
        • Nordquist L.
        • Daignault S.
        • et al.
        Clinical correlates of benefit from radium-223 therapy in metastatic castration resistant prostate cancer.
        Prostate. 2017; 77: 479-488
        • Holloman W.K.
        Unraveling the mechanism of BRCA2 in homologous recombination.
        Nat Struct Mol Biol. 2011; 18: 748-754
        • Antoni L.
        • Sodha N.
        • Collins I.
        • Garrett M.D.
        CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin?.
        Nat Rev Cancer. 2007; 7: 925-936
        • Naslund-Koch C.
        • Nordestgaard B.G.
        • Bojesen S.E.
        Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study.
        J Clin Oncol. 2016; 34: 1208-1216
        • Czornak K.
        • Chughtai S.
        • Chrzanowska K.H.
        Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair.
        J Appl Genet. 2008; 49: 383-396
        • Sharma Bhai P.
        • Sharma D.
        • Saxena R.
        • Verma I.C.
        Next-generation sequencing reveals a nonsense mutation (p.Arg364Ter) in MRE11A gene in an indian patient with familial breast cancer.
        Breast Care (Basel). 2017; 12: 114-116
        • Shenoy T.R.
        • Boysen G.
        • Wang M.Y.
        • et al.
        CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair.
        Ann Oncol. 2017; 28: 1495-1507
        • Zhang D.
        • Wang H.
        • Sun M.
        • et al.
        Speckle-type POZ protein, SPOP, is involved in the DNA damage response.
        Carcinogenesis. 2014; 35: 1691-1697
        • Barbieri C.E.
        • Baca S.C.
        • Lawrence M.S.
        • et al.
        Exome sequencing identifies recurrent SPOP, FOXA1, and MED12 mutations in prostate cancer.
        Nat Genet. 2012; 44: 685-689
        • Boysen G.
        • Barbieri C.E.
        • Prandi D.
        • et al.
        SPOP mutation leads to genomic instability in prostate cancer.
        Elife. 2015; 4
        • Wang Y.
        • Dai B.
        • Ye D.
        CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis.
        Int J Clin Exp Med. 2015; 8: 15708-15715
        • Alanee S.R.
        • Glogowski E.A.
        • Schrader K.A.
        • Eastham J.A.
        • Offit K.
        Clinical features and management of BRCA1 and BRCA2-associated prostate cancer.
        Front Biosci (Elite Ed). 2014; 6: 15-30