Advertisement
Review Article| Volume 21, ISSUE 1, P171-174, February 2023

Download started.

Ok

Antibody-Drug Conjugates in Prostate Cancer: Where Are we?

      Abstract

      Antibody-drug conjugates (ADCs) reflect a new promising approach in prostate cancer, even more so after the practice-changing results in other malignancies, either hematologic or solid. ADCs consist of monoclonal antibodies (mAb) targeted at specific antigens overly expressed on cancer cells compared to normal cells. A cytotoxic payload is attached to the mAb using a stable linker. In prostate cancer, PSMA, STEAP1, TROP2, CD46 and B7-H3 are antigens currently being studied as targets for ADCs. In this paper, we discuss the composition of ADCs and focus on their application and challenges as treatment options in prostate cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Genitourinary Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Strebhardt K
        • Ullrich A.
        Paul ehrlich's magic bullet concept: 100 years of progress.
        Nat Rev Cancer. 2008 Jun; 8: 473-480
        • Birrer MJ
        • Moore KN
        • Betella I
        • Bates RC.
        Antibody-drug conjugate-based therapeutics: state of the science.
        JNCI J Natl Cancer Inst. 2019 Jun 1; 111: 538-549
        • Li F
        • Emmerton KK
        • Jonas M
        • et al.
        Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models.
        Cancer Res. 2016 May 1; 76: 2710-2719
        • Nasiri H
        • Valedkarimi Z
        • Aghebati-Maleki L
        • Majidi J.
        Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy.
        J Cell Physiol. 2018 Sep; 233: 6441-6457
        • Khongorzul P
        • Ling CJ
        • Khan FU
        • Ihsan AU
        • Zhang J.
        Antibody–drug conjugates: a comprehensive review.
        Mol Cancer Res. 2020 Jan; 18: 3-19
        • Zhang X
        • Huang AC
        • Chen F
        • et al.
        Novel development strategies and challenges for anti-Her2 antibody-drug conjugates.
        Antib Ther. 2022 Jan; 5: 18-29
        • Hartley JA.
        Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy.
        Expert Opin Biol Ther. 2021 Jul; 21: 931-943
        • Staudacher AH
        • Brown MP.
        Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required?.
        Br J Cancer. 2017 Dec; 117: 1736-1742
        • Pignot G.
        Enfortumab vedotin for cisplatin-ineligible urothelial cancer.
        Lancet Oncol. 2021 Jun; 22: 748-749
        • Galsky MD
        • Eisenberger M
        • Moore-Cooper S
        • et al.
        Phase I trial of the prostate-specific membrane antigen–directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer.
        J Clin Oncol. 2008 May 1; 26: 2147-2154
        • Milowsky MI
        • Galsky MD
        • Morris MJ
        • Crona DJ
        • George DJ
        • Dreicer R
        • et al.
        Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer.
        Urol Oncol Semin Orig Investig. 2016 Dec; 34: 530.e15-530.e21
        • Ma D
        • Hopf CE
        • Malewicz AD
        • et al.
        Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen.
        Clin Cancer Res. 2006 Apr 15; 12: 2591-2596
        • Doronina SO
        • Toki BE
        • Torgov MY
        • et al.
        Development of potent monoclonal antibody auristatin conjugates for cancer therapy.
        Nat Biotechnol. 2003 Jul 1; 21: 778-784
        • Petrylak DP
        • Kantoff P
        • Vogelzang NJ
        • et al.
        Phase 1 study of PSMA ADC, an antibody-drug conjugate targeting prostate-specific membrane antigen, in chemotherapy-refractory prostate cancer.
        The Prostate. 2019 May; 79: 604-613
        • Petrylak DP
        • Vogelzang NJ
        • Chatta K
        • et al.
        PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study.
        The Prostate. 2020 Jan; 80: 99-108
        • de Bono JS
        • Fleming MT
        • Wang JS
        • et al.
        Phase I study of MEDI3726: a prostate-specific membrane antigen-targeted antibody–drug conjugate, in patients with mCRPC after failure of abiraterone or enzalutamide.
        Clin Cancer Res. 2021 Jul 1; 27: 3602-3609
        • Hubert RS
        • Vivanco I
        • Chen E
        • Rastegar S
        • Leong K
        • Mitchell SC
        • et al.
        STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors.
        Proc Natl Acad Sci. 1999 Dec 7; 96: 14523-14528
        • Danila DC
        • Szmulewitz RZ
        • Vaishampayan U
        • et al.
        Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer.
        J Clin Oncol. 2019 Dec 20; 37: 3518-3527
        • Trerotola M
        • Ganguly KK
        • Fazli L
        • et al.
        Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts.
        Oncotarget. 2015 Jun 10; 6: 14318-14328
        • Ge R
        • Wang Z
        • Montironi R
        • et al.
        Epigenetic modulations and lineage plasticity in advanced prostate cancer.
        Ann Oncol. 2020 Apr; 31: 470-479
        • Su Y
        • Liu Y
        • Behrens CR
        • et al.
        Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer.
        JCI Insight. 2018 Sep 6; 3121497
        • Aggarwal RR
        • Vuky J
        • VanderWeele DJ
        • et al.
        Phase 1a/1b study of FOR46, an antibody drug conjugate (ADC), targeting CD46 in metastatic castration-resistant prostate cancer (mCRPC).
        J Clin Oncol. 2022 Jun; 40: 3001
        • Mckertish CM
        • Kayser V.
        Advances and limitations of antibody drug conjugates for cancer.
        Biomedicines. 2021 Jul 23; 9: 872
        • Ceci C
        • Lacal PM
        • Graziani G.
        Antibody-drug conjugates: resurgent anticancer agents with multi-targeted therapeutic potential.
        Pharmacol Ther. 2022 Jan 4; 236108106
        • Best RL
        • LaPointe NE
        • Azarenko O
        • et al.
        Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): mechanistic insights into MMAE ADC peripheral neuropathy.
        Toxicol Appl Pharmacol. 2021 Jun 15; 421115534
        • Tang Y
        • Tang F
        • Yang Y
        • et al.
        Real-time analysis on drug-antibody ratio of antibody-drug conjugates for synthesis, process optimization, and quality control.
        Sci Rep. 2017 Aug 10; 7: 7763
        • Collins DM
        • Bossenmaier B
        • Kollmorgen G
        • Niederfellner G.
        Acquired resistance to antibody-drug conjugates.
        Cancers. 2019 Mar 20; 11: 394
        • García-Alonso S
        • Ocaña A
        • Pandiella A.
        Resistance to antibody-drug conjugates.
        Cancer Res. 2018 May 1; 78: 2159-2165
        • Shim H.
        Bispecific antibodies and antibody–drug conjugates for cancer therapy: technological considerations.
        Biomolecules. 2020 Feb 26; 10: 360